US009262519B1

[]
a2z United States Patent (10) Patent No.: US 9,262,519 B1
Saurabh et al. (45) Date of Patent: Feb. 16, 2016
(54) LOG DATA ANALYSIS 7,539,656 B2* 5/2009 Fratkina etal. 706/45
7,930,546 B2* 4/2011 Rhoadsetal. 713/176
(75) Inventors: Kumar Saurabh, Sunnyvale, CA (US); 8,380,630 Bz: 2/2013 Felsher ... 705/50
Christian Friedrich Beedgen, Mountain 8,495,429 B2 72013 Fu et al. ... - 7147381
! gen, 2004/0117648 Al* 6/2004 Kissel 713/200
View, CA (US); Bruno Kurtie, San 2004/0143403 Al* 7/2004 Brandon et al. . 702/19
Mateo, CA (US) 2004/0215430 Al* 10/2004 Huddleston et al. .. 70372
2004/0230572 AL* 11/2004 OMOIGUL w.orvvvvrvevveeerrinrnns 707/3
73) Assi .S Losic. Redwood City. CA (US 2005/0060643 Al* 3/2005 Glass etal. ..oocoo..... 715/501.1
(73) Assignee: Sumo Logic, Redwood City, CA (US) 2006/0015824 Al* 1/2006 Chrysanthakopoulos ... 715/835
. . L . 2009/0113246 Al* 4/2009 Sabato etal. 714/37
(*) Notice: Subject. to any dlsclalmer,. the term of this 5009/0125445 AL* 572000 Mousavietal ... 705/59
patent is extended or adjusted under 35 2009/0172688 Al* 7/2009 Bobaketal. 718/104
U.S.C. 154(b) by 117 days. 2009/0265609 Al1* 10/2009 Rangan etal. 715/234
2010/0024012 Al* 1/2010 Devine et al. .o.ccovve..n. 726/5
) 2010/0066540 Al* 3/2010 Theobald etal. 340/573.1
(21) Appl. No.: 13/489,267 2011/0185234 Al* 7/2011 Cohen etal. ..o 714/37
. 2011/0296244 A1* 12/2011 Fuetal. .cooooorrcoomrvconneen. 714/37
(22) Filed: Jun. 5,2012 2012/0124047 Al* 5/2012 Hubbard .. o 707/737
2012/0209539 Al* 8/2012 Kim .ooooovrrevrreeonsrrsreenns 702/41
Related U.S. Application Data 2012/0246303 Al* 9/2012 Petersen etal. 709/224
. o 2012/0259938 Al* 10/2012 Brabec et al. 709/206
(60) Provisional application No. 61/503,452, filed on Jun. 2013/0159021 A1* 6/2013 FelSher ..ooovoooooro, 705/3

30, 2011.
(51) Imt.ClL
GO6F 17/30 (2006.01)
(52) US.CL
CPC GO6F 17/3071 (2013.01); GO6F 17/30598
(2013.01)
(58) Field of Classification Search
CPC ..ccvvvvrerinenn GOG6F 17/3071; GOG6F 17/30598
USPC ittt 345/520, 522

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,502,133 B1* 12/2002 Baulieretal. 709/224
7472422 B1* 12/2008 Agbabianc...... 726/25
=T T = 1 04 ===
|
I Customer A
I Network
|

* cited by examiner

Primary Examiner — Leslie Wong
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

&7

ABSTRACT

Analyzing log data, such as security log data and event data,
is disclosed. Log data is received. Portions of the log data are
clustered into clusters of similar data portions. A signature for
each cluster is generated. Comparison of subsequent log data
with the signature indicates whether the subsequent log data
belongs in the cluster.

——————— :/(—1 10
Customer B

I
|
: Network 1 Portion :
|

106

A
I
|
|

d

|
I
|
L

| Customer B :)'112
| Network 1 Portion

|
|- —————— | CustomerC
Network

Network 2 | e m——————

| | —108

| CustomerB l)_ !
|

|

—_———— e —— =

52 Claims, 21 Drawing Sheets

102
)_

Data Collection and
Analysis Platform

o)—126

Service

US 9,262,519 B1

Sheet 1 of 21

Feb. 16, 2016

U.S. Patent

SHOMION
7 Jawoisny

S
oNT\ aom

wuope|d sisAleuy
pue uonos||09 eleq

c0 FR

|
||||||| | zwomen !
IW_ g Jowoisny "

|

Uollod | YIOMIaN
glewosny |

|

|

| UOIIOd | YIOMISN |
gJlewosny |

|

_
foémz_
v Jawoisno "

901

U.S. Patent

Feb. 16, 2016 Sheet 2 of 21

Access registration system

)—202

Provide credential information

)—204

Retrieve collector executable

)—206

Install collector

)—208

Run collector

)—210

Receive authentication token

)—212

A 4

Provide authentication token to
registration system

)—214

FIG. 2

US 9,262,519 B1

U.S. Patent

Feb. 16, 2016 Sheet 3 of 21

{ "name": "CollectorMessage", “record",

"fields": [

"type":

{ "name": "messageld", "type": "long" },
{ "name": "bladeId", "type": "long" },
{ "name": "source", "type": "CollectorSource"”
{ "name": "encoding", "type": "string"” },
{ "name": "messageTime", "type": "long" }
{ "name": "payloadSize", "type": "int" },
{ "name": "payload", "type": },
{ "name": "count", "type": "default":
]
e
{ "name": "CollectorSource"”, "type": "record",

"fields": [

"name",
"host",
"category",

{ "name": "type": "string" },
"type": "string" },

"type": "string" }

{ "name":
{ "name":

FIG. 3

US 9,262,519 B1

s

-1

}

US 9,262,519 B1

Sheet 4 of 21

Feb. 16, 2016

U.S. Patent

¥ 'Old

jwgng
wovJ
AN
‘saouelsul TOSAN pue apoel Buipnpdul .
saseqe]ep UoieuLIoUl JaWwolsno Bunsoy siaalas xnul| Ajuewd uonduosaq
I ke N E==1] JJ|juso eleQq I mcﬁoc lid 18uwaisny :uonoung
)
l SSAa 19d :suonejnboy l s9leg ‘Juswiedaq
onL\
X9juo0n |euond
oovl“ 0 ©
Iid ‘9q ‘1sem :sbe| sJaAIas 1L Od 1S9M SN :aweN Jo)os|j0n
vovl\ NoT\
10]09]|00 SIY} 91BAlJOB-9Y GZOAPX 9p03 UoRBAROY
o | NOLLYYNOIANOD y01237170D — D01 ONNS

US 9,262,519 B1

Sheet 5 of 21

Feb. 16, 2016

U.S. Patent

S 'Old

:uondussaq
m dH uswiedaq
alljooinog x:“.__wg\: M_m_z:
sodnr sdi/sal
00819 llemonng
. “JopuaA :adA)
vowan [C 80In0g A 4 82In0g
AN 01S=
x8u0s) [euondo
((jeuondo) sbe R :oweN
womR 906
R l 145 ‘Hod
¥0S
206 doL() dan@ edhL
IO U (32¥NO0S D01SAS aav) 914NOI IUNOS - 21901 ONNS

US 9,262,519 B1

Sheet 6 of 21

Feb. 16, 2016

U.S. Patent

9 'Old
009
:uonduosaq
[~] dH ;Juewpedeqg
Xnur / XINN
al _hwo._:ow s1onoy
Jediunr sdi/sal
09819 llemalld
. :JOPUSA =1 R
:uoIsI9 A A
IS1eA . 22Inog . 22Inog
x8u0s) [euondo
(jleuondo) sbe :oweN
‘PAWINSSE S| JSOY J0J08)|00 |B00] ‘PARILIO J| "SEWwWo Aq pejeledss ‘sisoy isi
$09 _ | «(shsoH
N‘ c0 (B0 ./Bojuen -6-8) yred rensed 1o ‘(jBojuen 6-8) yred Aloyoaap (6ol Awsbojuens -68) yred
albuis e Aoads "1asooyD aji4 8y} ash os|e ABW NOA “paidaesoe XelUAS SMOPUIAA JO XIun
esooup el |- Bo'/Bol/1e/ |:ured

mows | (IDUNO0S AMOLIINIA/TTI4 ddv) DIANOD I2MUNOS - 21901 ONNS

US 9,262,519 B1

Sheet 7 of 21

Feb. 16, 2016

U.S. Patent

MON PpY +

w_RR

(1] ¥2

XXXXX XXXXXX

bunssI 1583 TDASET oN

vomlﬂ

@ PaddoIS X)X XXXxXX ~ d93 ‘gH TS ZOa oM en M_
NER 80/
% BUIUUNY XXXXX XXXXXX 1id ‘TSoMm K|Foo SOM SN A_
— 90/
suo|D eI HOMO smels sbe] auwieN 1019900

Z Z Z
oglw vglw N:Iw

:810}09]|07D) S|gelieAy

TO US|

(LSI17 30123 7709) INFWIDVNVIN HOLDIT10D — 21901 ONNS

US 9,262,519 B1

Sheet 8 of 21

Feb. 16, 2016

U.S. Patent

8 'OId 008
MON PpY +
_ @@h@ BUIIUMY XXX XXXXXX BUNSST 1§83 TOased sn A
=
XXXXXXXXXXXX PaAdorS doL Boishs Jejewned NdA
YOOXYOOOXXX Bulaunyg dan BoisAs Jolawiuad Lllemand 1 oo
[Yooxxxxxxxxx bulaunyg bor/Bojuer; persowsy ¥H b asxnun |[R
uonduasaq snjejs s|ielaq adA | sbe| SweN 92Jnog
Py -
_] @ PIOCOTS X000 X00XX 98T 'GH M Zoawemen /\
)
_ E_ % BUIuny X006 XXXXXX Td S8M 1D oM sn A_
QUo|D 9IPBPRA HOMO snjeis uonduasaq sbe| QweN J0}29]10D

:810}09]|07D) S|gelieAy

G U | (1s11 ¥0.1937109) INFWIDVNVIN ¥01937109 - 31901 ONNS

US 9,262,519 B1

Sheet 9 of 21

Feb. 16, 2016

U.S. Patent

0z6=5| espuesse)

c6
866y ¥ T\Jo __enenp oy

I
|
I
I
I
I
|
aubug |
Buissaooid d alnpoN |- > » |
weansg 141 mey ~ |
21018 & r— v wwlmMmlm.:b alld__ _
painjonng n 97 2| \.\./\./.omj
I Josied |« < 8 e— Y~ 1009100
woayshs 3 I R
Asend (o6 _ P05 065
oL, ree _ononp %o0jg ! 0zt
xspul | " P _
zee=S| weLing |0 1exoptl — < |
HiEEIEER I
. ommuﬂ 226 _
v26=| Al_ ejepejopy "
415 |
¢ €S Al_ Jojeseus womR _
926 1elousg
IW Josied Xauod |
o6 016 wuopeld |

U.S. Patent Feb. 16, 2016 Sheet 10 of 21 US 9,262,519 B1

1002
Receive information from separately)_
installed information reporting module

A 4

Send to a remote server messages)‘1 004
including raw information received
from reporting module

FIG. 10

U.S. Patent Feb. 16, 2016 Sheet 11 of 21 US 9,262,519 B1

Receive from a remote device a)‘ 1102
message including raw information

A 4

1104
Parse at least a portion of the raw f
information

FIG. 11

U.S. Patent

Feb. 16, 2016 Sheet 12 of 21

Receive raw data from remote device

1202
)_

Evaluate at least a portion of the raw
data using a plurality of rules

1204
)_

Determine a confidence measure for at
least some of the rules

)—1 206

A 4

Provide as output an indication that the
raw data pertains to a source when the
confidence measure exceeds a
threshold

1208
)_

FIG. 12

US 9,262,519 B1

US 9,262,519 Bl

Sheet 13 of 21

Feb. 16, 2016

U.S. Patent

g€l 'old

((\AxTdx"gATapmd) \ SNINJIYIT

(umogaaod) adIdvSId

(AxTdxgATAPMI) DNINVYAT
(umogizod) auEIdvsSId
(umo@izod) @ATAVSIA

(butpmassien) HNINIISIT

AN NN

90¢1L

)

93B1s dIS ¥

o3els d4ls ¢

®31®1s d4IS 9

91e18 d4Is 91

®3e1s dIs 91

rJ\|\
vocl

Vel 'Ol

| (\umogixod) \ aATEYSIAl (\OUTPMASHBW)\ OHNINALSIT)
< 93e1§ dIS P\ 3104 T NVIA dIS I SP\P\WP\P\UP\P\PP\P\ £ZTILSOH +P\ +P\ +P\ +P\ +B\

3104 T NV'IA

ja04
1104
1104
1104
—~
cotel

T
T
T
T

NYTA
NYTA
NVTA
NYTA

dlLs

drs
dlLs
drLs
dlLs

HHHH

SQPWLTYSOP8S

STZWZEY90P6S
SQPWLTYOTPGS
SGPWIEYTOPO9
SZQUQTYUTOPO9

€ZTLSOH

€ZTLSOH
€ZTLSOH
€ZTLSOH
€ZTLSOH

€€

91
91
91
91

4]

LS
LS
LS
LS

0T

0T
0T
0T
0T

LZ

Lz
LZ
Lz
LZ

100

100
100
100
100

U.S. Patent

Feb. 16, 2016 Sheet 14 of 21

Receive raw data from remote device

1402
)_

A 4

Determine that the raw data does not,
within a predefined confidence measure,
conform to any rules included in a set

1404
)_

Perform a clustering function on the raw
data

1406
)_

Generate at least one parser rule based
on the clustering

1408
)_

FIG. 14

US 9,262,519 B1

U.S. Patent Feb. 16, 2016

Browser

\—1 504

124

Sheet 15 of 21

FIG. 15

US 9,262,519 B1

1502
)_

Data Collection and Analysis

Platform
1528
)—1 526
3
Web Database
Service

US 9,262,519 B1

Sheet 16 of 21

Feb. 16, 2016

U.S. Patent

a91 "Old

f(swtjuotlde, ‘adAjuoTide ‘JngIWTI ¢, SW JT°% ST JITTOJIUOD S¥% O UE] DWIL S%, ‘OTTF30T)FIutudy
G |h\ f(Mou € SYINBIHE P%-W%-A%. ©($#NQIWT])J09ZTS ‘4NQIWTI)BWTIHIS
csol {[gzrlsngouwty Jeyd

V9l "'Old

IW\.mE '@ ST JITTOJ3uU0d doils

woowh\.ms £'0 ST JSTTOJIUOD JJels
9091

01

03

03

"poATSdad puemwod do3s

|h\.ms €'9 ST JITTOJ3IU0d do3s
7091l

"aTpT
*aTpPT
*aTpPT

ST
ST
ST
031

"pPoATSl39d puewmod jJdels

Ih\.ms '@ ST JITTOJIUOD JJels
c09lL

uaxel awr]

uayey awtl

uadey swrl
JBTTOJIUO)
JBTTOJIUO)
JITTOJIUO)
JITTOJIUO)
uadey swrl
JBTTOJIUO)

CC:1T:00

v :10:00

80:¢0:00
L0:C0:00
90:70:00
50:70:00
70:70:00
£€0:70:00
C0:C0:00

S0-TE-CTeT

S0-TE-TTeT
S0-TE-CTOC
S0-TE-CTeT
S0-TE-CTeT
S0-TE-TTeT
S0-TE-TTeT
S0-TE-CTOC
S0-TE-CTeT

US 9,262,519 B1

Sheet 17 of 21

Feb. 16, 2016

U.S. Patent

Ll "Old
‘s)jnsal Aue paonpoJd J0u sey yoreas

afbessapy wll #

(e] [ka](<] 0J0 [J:8bed > (=]

| sabessa|y

4520088082£9204 | :U01SSaS BUON :SHNSOY 10:00:00 :ow} pesde|3 synsal Buiioyjed ouoq snjelg

, WY 61:2), WY 012l WY 5021 ,

7 v

9 9

g g

WY 97:91:Z) ZL0Z/1 /50 WY 97:10:Z) ZV0Z/E/50

SYoneS | UBdQ :Seyoless panes

[VEIS]| , SenuIy G} ise|(]) 8Jn2oxa 0} ¥JLNJ HY uay) 213y youeas ok adk] |
7 vou 2071 [+]yoseeg pawreuun

901 siopgon| | smeis yoseag | |owoojopm
MO uorS | 1907 ONNS
(/oo\._‘

US 9,262,519 B1

Sheet 18 of 21

Feb. 16, 2016

U.S. Patent

8l Old
2 Jaflosuon ysiq :Alofisie Bojiajonuoa/Bol/IeA :BWRN VISJ0NUOdYSIP ASOH 000°91-81:00
9|1 S149]10U00 ¥0-20-00 G0-1E-¢10C ZL0T/LE/S0 €
Jajjonuon) ysiq -Kiobalen BopsjjonucaBoj/eA) :auweN Ig|[0nuodysip IS0 000" ZF-8v:00
SW () S1 49)|044u00 LIelS 0} usxe) awl] £0:20:00 S0-1E-¢L0¢ ZL0T/LE/S0 ¢
Jaflosuon ysiq :Alobisiey Bojiajo5uoa Dol BWRN VI9)0NU0d-YSIp ASOH 000°81-81:00
= ‘PEAISISI PUBLLILLICD JIES Jajj0.ju0]) 20-20:00 G0-1E-¢L0C ZL0Z/LEG0 |
5 \-8081 abessaly owly #
(] ()< 186130 [_1):obed (> J[>=1]
pogL~ 08l 181 -~ [9ZUEWNG | saBessapy
460787980/Q06/3/ :U0ISSAS G98'Z ‘SHNSSY £2:00:00 2w pasde|3 synso! Buiiayjed suog :sniejs
ﬂ@/,ﬁ__ <Jwoezl >_/</m@/// < i
7NN N AR AR NN
i\ MEES R N
Qol 00
IV 8¥-8¥-C) Z1L0Z/1E/S0 IV 00-00C1 Z2102/1£/50
SYoAeS | TadQ .Seyoleas panes
s) O J oy siy1|(A] - 10}09]|00-J9]|01JU0O-SIP |
\ 7081 [+]uoieeg paweuun
@omr $1009)100| | Smels yareag | |ewoopm
O U0TS | 1907 ONNS

cl8l

US 9,262,519 B1

Sheet 19 of 21

Feb. 16, 2016

U.S. Patent

61 'Ol o@/ Smr zz6l vi6L
2 OL6L—— 'SW, 0SIilojuod, 0} Usye}awl] 31Ya$ AE@E o) O ¥
/'SSFMAQY dI§ woysenbel sed snigjs Buiyseey I1VA$ K@ €IS O ¢
8061 9061 — Paniaoal Umc%w__ws LBONUOD VA S 965 O ¢
] -¢lél pO6L —— 9Pl SIIOIU0) ILYAS KR 605 o |
= Z06L—JeIsnj) suopdy juno) joejeg &
= [=)[<] 10 [_1)ebed[> =]
oN_._mEEsw_ wwmmww¢§
490781880/ 063/ :U0ISSAS G89'Z :SHNSAY £2:00:00 :awi) pasde|q sinsal Buuayied auogq :snjejg
Nr§</nv§_ SUNNNNN WY 0€-ZL AY 6L, S = NI
NN N NINN N " NN //um
NN N \ N NN N\
; ﬂ/ NN] N N
! N 00]
NV 818121 2L0Z/1LE1S0 AV 00:00:¢) ¢102/1E/50
SVoRES | Usd(:Seyoless panes
LIS]| © inoH SIYL|(4] 10199003 [0TUCINSIP |
[+]uo4eeg paweuun
siopgoy| | smeis yoreag aWOoI[sM
MO uorS | 1907 ONNS
1/loomv

US 9,262,519 B1

Sheet 20 of 21

Feb. 16, 2016

U.S. Patent

0Z '9Id
00z~ SW + 0 SI J9]04u00 dojs 0} Usyej BWIL 1YA$ KAk 67 O 2
- 200z —'SW , "0 81 19|0Ju0D Jie)s O} uaxe} sl J1YA$ K@ 2% 1§ o |
= oSNy suondy junoy j08es #
(&) [SIEed MSIA] [SSey] [0pey] [opun] [(IPT] [e<)C<] 140 [T)wabed (o J0oo]
| 8zLewwng [sabiessajy
450787880206/ :U0I1SSeS G887 :SHNSAY £Z:00:00 :oul} posde|3 synsas Bulsoujed auogq snjeys
szl S—— Y 082 Wy ela TS
07 N NININN N TN I
M/ NI\ N N ” Wu v
0l Nim 0L
Y 87:8V2) 2L0Z/VEID WY 00:00Z) ZH02/VES0
SVoRES | Usd(:Seyoless panes
RS I0H SIY1|(A] 1008][00-Y/JOJ[0AUCO-YSIP |
[+]yoJeeg paweuun
$10}09][0D snjels yolesg 803
o W01S | 1907 ONNS
%000z

U.S. Patent Feb. 16, 2016 Sheet 21 of 21 US 9,262,519 B1

)—21 02
Receive log data

A 4

2104
Cluster portions of log data into clusters of similar data)_
portions

)—2106
Generate a signature for each cluster

FIG. 21

US 9,262,519 B1

1
LOG DATA ANALYSIS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 61/503,452 entitled DATA COLLECTION
AND TRANSMISSION filed Jun. 30, 2011 which is incor-
porated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Business and other entities are increasingly interested in
capturing data associated with their computer networks for
information technology (IT) security, IT operations, compli-
ance, and other reasons. Unfortunately, analyzing that data
can be difficult, expensive, and ineffective. One reason is that
the data is voluminous and generated at a rapid rate. Another
reason is that an increasing number of types of devices emit
log information in varying and new formats. As new types of
data are to be captured and analyzed, significant work is
typically required from expert contractors.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 illustrates an environment in which data, including
event data, is collected and analyzed.

FIG. 2 illustrates an embodiment of a process for enrolling
with a data collection and analysis platform.

FIG. 3 illustrates an example collector message format.

FIG. 4 illustrates an embodiment of a collector configura-
tion interface as rendered in a browser.

FIG. 5 illustrates an embodiment of a source configuration
interface as rendered in a browser.

FIG. 6 illustrates an embodiment of a source configuration
interface as rendered in a browser.

FIG. 7 illustrates an embodiment of a collector manage-
ment interface as rendered in a browser.

FIG. 8 illustrates an embodiment of a collector manage-
ment interface as rendered in a browser.

FIG. 9 illustrates an embodiment of a data collection and
analysis platform.

FIG. 10 illustrates an embodiment of a process for collect-
ing and transmitting data.

FIG. 11 illustrates an embodiment of a process for receiv-
ing and processing data.

FIG. 12 illustrates an embodiment of a process for auto-
matically selecting a parser.

FIG. 13 A illustrates a subset of entries in a log file.

FIG. 13B illustrates an example of a regular expression.

FIG. 14 illustrates an embodiment of a process for auto-
matically generating a parser.

FIG. 15 illustrates an environment in which log data is
collected and analyzed.

FIG. 16A illustrates a subset of entries in a log file.

FIG. 16B illustrates a portion of a C program.

FIG. 17 illustrates an embodiment of an interface as ren-
dered in a browser.

FIG. 18 illustrates an embodiment of an interface as ren-
dered in a browser.

FIG. 19 illustrates an embodiment of an interface as ren-
dered in a browser.

FIG. 20 illustrates an embodiment of an interface as ren-
dered in a browser.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 21 illustrates an embodiment of a process for analyz-
ing log data.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composition
of matter; a computer program product embodied on a com-
puter readable storage medium; and/or a processor, such as a
processor configured to execute instructions stored on and/or
provided by a memory coupled to the processor. In this speci-
fication, these implementations, or any other form that the
invention may take, may be referred to as techniques. In
general, the order of the steps of disclosed processes may be
altered within the scope of the invention. Unless stated oth-
erwise, a component such as a processor or a memory
described as being configured to perform a task may be imple-
mented as a general component that is temporarily configured
to perform the task at a given time or a specific component
that is manufactured to perform the task. As used herein, the
term ‘processor’ refers to one or more devices, circuits, and/or
processing cores configured to process data, such as computer
program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is
known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

FIG. 1 illustrates an environment in which data, including
event data, is collected and analyzed. In the example shown,
three different customers (Customers A, B, and C) provide
data to a data collection and analysis platform 102 (also
referred to herein as “platform™ 102) via network 124. Other
elements may also provide data to platform 102, such as
software-as-a-service provider 122 (“SAAS Provider” 122).

Customer A (also referred to herein as “Acme Company™)
maintains an enterprise network (104) at a single location.
Included within the network are various desktop and laptop
computers, commodity server-class hardware running vari-
ous business applications and database software, and other
devices typically deployed in an enterprise setting. As will be
described in more detail below, data collectors can be
installed within network 104 and configured to transmit data,
including event data, to platform 102. The collectors are also
configured to receive information from platform 102, such as
configuration and control messages.

Customer A also makes use of services offered by SAAS
Provider 122. SAAS Provider 122 is configured to report
information associated with Customer A (and others of its
customers) to platform 102. In particular, SAAS Provider 122
can provide both in-application log information, as well as
lower level information (such as failed login attempts against
Customer A’s accounts). Using the techniques described
herein, data provided by Customer A, and data provided on
behalf of Customer A by SAAS Provider 122 can both be
ingested into platform 102 and correlated. Other types of

US 9,262,519 B1

3

providers can also be integrated into the environment shown
in FIG. 1 such as platform-as-a-service (PAAS) and Infra-
structure as a Service (IAAS) and the techniques described
herein adapted accordingly. SAAS, PAAS, and IAAS provid-
ers are referred to collectively herein as “third party service
suppliers.”

Customer B (also referred to herein as “Beta Corporation™)
is significantly larger than Customer A and maintains net-
works in multiple physical locations. For example, Beta Cor-
poration has one office in Singapore and another in Denver,
each with respective networks (106, 108). Collectors installed
at network 108 are configured to communicate with platform
102. Network 106 is subdivided into two portions—one of
which (110) is allowed to communicate with nodes outside
network 106, and one of which is not (112). In this scenario,
collectors installed within network 112 communicate with
collectors installed within network 110 (a process also
referred to herein as “collector chaining”), which in turn
communicate with platform 102.

Customer C (also referred to herein as “Cool Co.”) is simi-
lar in size to Customer A. In addition to maintaining an
enterprise network 114, Customer C also leases servers that
are located at data centers 116-120. Collectors are installed in
network 114 and at data centers 116-120 and all of the col-
lectors communicate information with platform 102.

Platform 102 is illustrated as a single logical device in FIG.
1. As will be described in more detail below, platform 102 is
a scalable, elastic architecture and may comprise several dis-
tributed components, including components provided by one
or more third parties. Further, when platform 102 is referred
to as performing a task, such as storing data or processing
data, it is to be understood that a sub-component or multiple
sub-components of platform 102 (whether individually or in
cooperation with third party components) may cooperate to
perform that task. In some embodiments, platform 102 is
owned by or otherwise under the control of one of the parties
described herein as being a customer (e.g., Customer B), or a
partner, and use of the platform by other customers is omitted
as applicable.

FIG. 2 illustrates an embodiment of a process for enrolling
with a data collection and analysis platform. In some embodi-
ments the process shown in FIG. 2 is performed by an admin-
istrator, such as an administrator of network 104 (also
referred to herein as “Alice”). The process begins at 202 when
Alice accesses a registration system. As one example, at 202,
Alice directs a web browser to a web interface provided as a
service (126) by platform 102. At 204, Alice provides regis-
tration information, such as an email address and password,
as well as information about Acme Company. Once Alice’s
registration information has been approved (e.g., after her
email address has been verified), she will be presented with
access to a collector executable (e.g., via a download page).
Different versions of the collector executable exist for differ-
ent operating systems. In particular, the application code can
be wrapped with operating system specific techniques for
installing services. For example, if Alice retrieves an execut-
able (206) for a computer (e.g., her primary administrative
console) running a Microsoft Windows operating system, the
application will install itself in the Windows Service Man-
ager. In the case of an Ubuntu Linux system, Alice would be
instructed to copy an apt get.

At 208, Alice installs the collector. The retrieved collector
can be, but need not be used on the computer with which Alice
accesses the web interface to platform 102. For example,
Alice may desire to install the collector on the Windows-
based system but download the collector executable using the
Linux-based system, a smartphone or tablet, or other appro-

25

40

45

50

4

priate device. As will be described in more detail below,
collectors may be installed on a node to be monitored (e.g., a
particular server) and may also be installed on a node that is
in communication with a device to be monitored. For
example, a collector may be installed on a server that is in
communication with a router, printer, and/or other devices
onto which a collector is not installed. One collector may
collect data for a single device, but may also be configured to
collect data from multiple devices, as applicable.

At 210, Alice runs the collector application. On first star-
tup, the executable contacts web service 126 and requests an
authentication code (received at 212). The executable
instructs Alice to access the web interface using her browser
and to enter as input to the collector application the authen-
tication code (214), either viaa GUI or via a command line, as
applicable. In various embodiments, other credentials are
used at portions 212 and 214 of the process. For example, an
API key, a username and password, or combinations of cre-
dentials can be used as applicable.

As part of a successful registration, various records are
created in databases maintained by platform 102. For
example, an organization identifier is established for Acme
Company and the collector is assigned an identifier that is
associated with Acme Company’s organization identifier.
Other processes can also occur as part of a successful regis-
tration. For example, a credential can be generated and
pushed to the collector by platform 102.

From an end-user viewpoint, once the authentication code
is successtully input, the registration process ends. Alice will
now be presented (via web service 126) with an interface to
configure her collector, and will typically never directly inter-
act with the collector executable again, nor will she need to
manually edit any local configuration files. Instead, she will
configure her collector(s) entirely through interfaces pro-
vided by web service 126. Any subsequently installed collec-
tors can be configured to report to already installed collectors
(e.g., in the chaining scenario described above in conjunction
with networks 112 and 110) and can also be configured to
report to platform 102 directly.

Collectors have global parameters, such as the amount of
bandwidth that the collector can use when exchanging infor-
mation with platform 102 and what size of cache the collector
is allowed to use. If any changes need to be made, Alice is able
to view and modify the collector configuration through web
service 126. Alice can also define data retention management
policies using web service 126. For example, she can specify
durations for which data should be stored, whether in raw, or
parsed format, and can do so with respect to different types of
data. For example, Alice can specify that PCl-related data be
stored for one year, while syslog data be stored for one month.

A collector acts as a container, or chassis, for “blades.” A
blade is a data retrieval mechanism. Each blade knows how to
access one particular type of data and may be either passive
(e.g., acting as a syslog server and receiving forwarded
events) or may be active (e.g., able to log into a router using
user supplied or other credentials and pull data). One example
type of blade is able to tail a local file. Another type of blade
is able to tail aremote file. Yet another type of blade can access
a domain server and obtain events. Other blades are config-
ured to access various data sources using vendor APIs. Mul-
tiple blades can be instantiated in a single collector, including
multiple blades of the same type. For example, if multiple
files (e.g., in different directories) are to be “tailed,” in some
embodiments one blade will be instantiated per file. In some
embodiments, if the files to be tailed are located in the same
directory, a single blade is used to tail all of those files.
Multiple blades can also be configured to access the same file,

US 9,262,519 B1

5

and a single blade can be configured to access multiple files
across multiple directories, as applicable.

Blades are configured to acquire data and provide it to the
collector with which they are associated. As will be described
in more detail below, the collector packages the information it
receives from the blades into messages, which it transmits to
a receiver on platform 102.

For some customers (e.g., for highly distributed customers
with 2,000 sites), the registration process illustrated in FIG. 2
may not be practical. Other techniques can also be used to
register users and/or collectors with platform 102. For
example, 2,000 tokens might be pre-generated by platform
102 and distributed to the customer, along with preconfigured
collectors/blades, with instructions for installing the collec-
tors in an automated fashion.

In various embodiments, context data is obtained as part of
the registration process and/or is obtained as part of a parallel
process. As one example, at 208, when the collector is
installed, a separate script executes, prompting the user to
answer certain contextual questions about the network, such
as what types of devices are present on the network and what
their IP addresses are. As another example, the user may be
prompted to upload a list of assets to platform 102 using a
spreadsheet, a text file, or a dump from a Configuration Man-
agement Database (CMDB) system as part of portion 214 of
the process shown in FIG. 2. As yet another example, a
scanning tool, such as nmap, may be included in an install
package (if not already present on the device onto which the
collector will be installed). When the collector is run for the
first time at 210, the scanner is also run. Based on any of these
device discovery techniques (or other appropriate techniques,
such as MAC detection), implicated blades can be recom-
mended to the user, can be automatically configured for the
collector, or some combination thereof. As one example, if an
Apache web server is detected, a blade that tails the /var/log/
apache directory of the server can be recommended. The
context data can be periodically updated to discover changes
to the network, including the addition of new components.
For example, on a weekly or other basis, new scans can be
performed (and/or any of the other discovery techniques can
be repeated) and new blades can be pushed to the appropriate
collector (or removed from the collector) as applicable.

As will be described in more detail below, contextual data
can also be used to augment message information sent by
collectors to platform 102. For example, if a customer has
devices such as antivirus, LDAP, or IDM servers, role man-
agers, CMDBs, and/or vulnerability data in their network,
data from those sources can be provided to platform 102 as
context data (i.e., separately from the messages sent by col-
lectors). In some embodiments, users are asked a series of
interactive questions, such as whether they have a CMDB or
a network scanner, and based on the answers, solutions are
recommended, such as “since you don’t have a network scan-
ner, click here to install one.” Updates to context data can be
sent to platform 102 on any appropriate schedule, such as by
performing nightly or weekly refreshes, or by sending
updates whenever changes are made.

FIG. 3 illustrates an example collector message format. As
will be described in more detail below, multiple messages are
packaged together by collectors (into “message piles™) and
transmitted to platform 102 (e.g., via HTTPS) in a com-
pressed, encrypted form. Various portions of an example mes-
sage format will now be described. Other message formats
(omitting portions of the illustrated message and/or augment-
ing portions of the illustrated message) can also be used in
conjunction with the techniques described herein, as appli-
cable.

15

20

25

40

45

55

6

In the example shown, the “payload” is the raw data pro-
vided to the collector by a blade. One example of a payload is
an entry in a firewall log indicating that a computer having a
particular source IP address and port attempted to access a
particular destination IP address and port at a particular time.
Another example of a payload is an entry in a log file indi-
cating that a particular security badge was used to access a
particular door at a particular time. Another example of a
payload is a credit card transaction that includes a date,
amount, and description. Yet another example of a payload is
a log from a software application indicating that a particular
event took place at a particular time.

The payload for a syslog blade would be one line. For
sources where a line terminator does not necessarily map to a
semantic end of line (e.g., in the case of Java logs), the
message payload may be multiple lines. Different techniques
can be used to determine what should constitute the bound-
aries of a given payload. In the previous two examples (syslog
and Java logs), the boundaries conform to a specification. For
other formats, regular expressions can be used to determine
patterns and suggest to the user (subject to confirmation/
override) how to chunk the data into appropriately sized pay-
loads.

The “messageld” is a primary key (assigned when the
message is created) and the “bladeld” is the primary identifier
of the particular blade that obtained the data. As mentioned
above, a given blade reports its information to a given collec-
tor (which has its own collector identifier). Thus implicitly a
“collectorld” can be associated with a given message without
needing to be explicitly included in the message itself.

As illustrated in FIG. 3, “source” is a struct of “source-
.name,” “source.host,” and “source.category”—metadata
about the source of data that the blade is accessing. In an
example where a blade is tailing a particular file, the “name”
would be set to the name of the file being tailed. The “host”
would be the IP address or hostname of the host from which
the data is obtained, and the “category™ corresponds to a
user-defined category (e.g., “production server” or “testing”).

Examples of “encoding” include UTF-8 and ASCII. In
some embodiments, the “messageTime” is the time the mes-
sage was created by the collector. In other embodiments, the
“messageTime” is the time at which the data was collected, as
that time is reported by the source of the data. For example, if
the data is obtained from a device with a clock that is skewed
by five minutes, in some embodiments the “messageTime”
would be that skewed time instead of the collector’s time. In
various embodiments, both the time the message was created,
and the reported time from the source are stored within the
message. As will be described in more detail below, platform
102 can be used to enrich the contents of a message, including
by inserting additional timestamp information. The “pay-
loadSize” is the number of bytes to be expected in the afore-
mentioned “payload.”

FIG. 4 illustrates an embodiment of a collector configura-
tion interface as rendered in a browser. In the example shown,
an administrator at Cool Co. (“Charlie”) has registered with
platform 102, such as by using the process illustrated in FI1G.
2. Charlie has entered the name of his collector in box 402
(“US West DC 1 Servers”) and provided applicable tags in
box 404. In particular, the collector has been tagged with
“West” (indicating that the collector is in the West Coast data
center), “DB” (indicating that the collector is collecting infor-
mation from database servers), and “PII,” indicating that what
is stored in those database includes personally identifiable
information. In region 406, Charlie has specified various
optional information, such as a description of the data sources
(408) and that the data stored on the servers is subject to PCI

US 9,262,519 B1

7
DSS (410). Such tags can be used to partition data and sig-
nificantly improve the amount of time it takes to process
queries against that data.

FIG. 5 illustrates an embodiment of a source configuration
interface as rendered in a browser. In the example shown,
Charlie is configuring a particular blade. As with the interface
shown in FIG. 4, the interface is provided by platform 102—
not by a device sitting in network 114 or data centers 116-120.
In the example shown, Charlie is configuring a syslog blade.
Default settings for the blade (e.g., that UDP and port 514 will
be used) are automatically populated, but can be changed by
selecting radio button 502 or dropdown 504. Other applicable
information, such as name and tag information are specified
in boxes 506 and 508.

In region 510, Charlie can indicate the type of source
associated with the syslog, such as by specifying that it is a
firewall or that it is a router. If he selects a source type, shared
settings (i.e., shared by all firewall sources) can be populated
into the blade configuration, such as tag information. Other
types of sources (not shown) include Confluence logs and
other application logs. Tag information and/or other metadata
(whether specified in a collector configuration interface or a
blade configuration interface) is, in various embodiments,
added to or otherwise associated with messages by platform
102, rather than that information being added by a given
collector or blade.

In region 512, Charlie can indicate the vendor of the
source. In various embodiments, information such as source
vendor and version may be omitted by Charlie during initial
configuration, but be subsequently automatically populated
(or populated subject to Charlie’s approval) once messages
are received from that blade (e.g., based on metadata or other
indicators of vendor/version). In various embodiments, Char-
lie is provided with the ability to override system assump-
tions, such as hostname information. For example, if a server
from which data (e.g., log data or other event data) is being
collected is a virtual computer provided by Amazon Elastic
Compute Cloud (EC2), the default hostname assumed for that
server may be unwieldy. Charlie is able to specify a more
appropriate hostname as applicable, using an interface such
as is shown in FIG. 5.

FIG. 6 illustrates an embodiment of a source configuration
interface as rendered in a browser. In the example shown,
Charlie is configuring a “tail” blade. As with the interfaces
shown in FIGS. 4 and 5, the interface shown in FIG. 6 is
provided by platform 102. Instructions for how to configure
the blade are provided to Charlie, such as in region 602. In the
example shown, Charlie has manually entered a path (/var/
log/* log) to logs that reside on his administrative worksta-
tion, a Debian Linux system. In other contexts, Charlie could
also have chosen to specify a remote file (or directory) loca-
tion manually, and could also use the File Chooser button
(604) to specify what log file(s) he would like to tail.

The interface shown in FIG. 6 can be used in conjunction
with a variety of devices. As one example, some routers
support logging via syslog. The router’s logs can be sent to
platform 102 by having an administrator make sure the log-
ging functionality is enabled in the router, and configuring a
blade to receive that log information as a syslog server. In
various embodiments, configuring the router is an automated
task performed by the collector application. For example,
Charlie could be prompted for credential information associ-
ated with the router (e.g., the router administration login and
password) and the collector application could use that infor-
mation to configure the correct syslog port and other infor-
mation on the router. Once configured, the router will provide

10

15

20

25

30

35

40

45

50

55

60

65

8

log information to the blade, which provides the data to a
collector which in turn transmits it to platform 102.

Other types of blades can be configured using interfaces
similar to those shown in FIGS. 5 and 6, with appropriate
modifications. One example is an “active” blade that logs into
a particular vendor’s router or otherwise communicates with
the router (e.g., via an API). The configuration interface for
the blade could include a region into which an administrator
would enter a login or password (or other credential such as a
certificate or token). Other options, such as how frequently to
retrieve information from the router would also be specified
in the configuration interface. As another example, in the case
of a “remote tail” blade, information such as an ssh key, or
NFS mount information could be provided in the blade con-
figuration interface. As yet another example, a blade could be
configured to periodically access an FTP drop site for data
using supplied credentials. In various embodiments, the col-
lector to which the blade provides data is responsible for
breaking the file retrieved from the FTP site (or other multi-
line data source) into discrete messages.

FIG. 7 illustrates an embodiment of a collector manage-
ment interface as rendered in a browser. In the example
shown, Charlie has configured two additional collectors with
platform 102—one at data center 118 (702) and one at data
center 120 (704). The collector that Charlie configured using
the interface shown in FIG. 4 appears in region 706. Suppose
Charlie wishes to modify the configuration of collector 702.
To do so, he clicks on link 708 and will be presented with an
interface similar to the one shown in FIG. 4. If Charlie clicks
on a tag, such as “West,” only those collectors having that tag
(collectors 706 and 702) will be displayed in interface 700. If
Charlie clicks on “Running” link 710, a search for the collec-
tor’s log files will be launched. Charlie can start and stop a
given collector by selecting one of the icons depicted in
On/Off column 712. He can delete a collector by selecting one
of'the icons depicted in column 714. Charlie can create a new
collector by either selecting button 718, or by cloning one of
the existing collectors by selecting one of the icons depicted
in column 716.

FIG. 8 illustrates an embodiment of a collector manage-
ment interface as rendered in a browser. Charlie selected icon
708 in the interface shown in FIG. 7 and was presented with
the interface shown in FIG. 8 as a result. In particular, by
selecting icon 708, Charlie has exposed a list of the blades in
region 324. As with the collectors, Charlie can modify, delete,
and/or add new blades by interacting with the interface shown
in FIG. 8 or other appropriate interfaces. Any changes made
to collectors or to blades by Charlie (e.g., through the inter-
faces shown herein) will be transmitted by platform 102 to the
implicated collector and take effect immediately.

In various embodiments, the collector is a microkernel and
the blades can be plugged in and removed without modifying
the microkernel itself. Using the techniques described herein,
only those blades required for data collection at a given site
need be present. If new blades are subsequently needed (e.g.,
because a customer has installed new hardware), only those
needed blades need be sent by platform 102 to the collector.
Similarly, if a given blade ceases to be needed by a collector
(e.g., because the last instance of the blade has been removed
from the collector’s configuration), it can be removed.

FIG. 9 illustrates an embodiment of a data collection and
analysis platform. In the example shown, collector 902 com-
municates with platform 102 via a receiver 908 using bidi-
rectional communications (904/906). In particular, collector
902 sends message piles (e.g., containing 300 messages) to
platform 102, optionally sends context data, and receives
configuration and command messages from platform 102. In

US 9,262,519 B1

9

various embodiments, collector 902 also receives informa-
tion for other devices from platform 102, such as by receiving
alerts or remediation information to be provided by the col-
lector to a remediation device or an administrative console.

Collector 902 also periodically sends heartbeats to plat-
form 102. In various embodiments, collector 902 is config-
ured to send a heartbeat to platform 102 each time more than
5 seconds (or another appropriate length of time) have
elapsed since the collector last sent a communication
(whether another heartbeat, or a message pile, or context
data). If platform 102 notices that the heartbeats it receives
from collector 902 have become sporadic or stopped entirely,
platform 102 is configured to notify one or more appropriate
entities. As one example, Alice may configure platform 102 to
email her in the case of any detected failures of any collectors
associated with Acme Company. Alice may also configure
platform 102 to email an alias or group of administrators,
and/or to generate alerts via other communication channels,
such as sending a text message to her phone.

Database 910 is configured to store received context data in
context tables. Other appropriate data structures may also be
used, as applicable, depending on the nature of the context
data. The context data can be mapped to portions of the data
received via the message piles. For example, a given blade
(having a particular blade identifier) may be associated with a
particular end user workstation. Information about that user
may also be received as context data obtained from Active
Directory or another appropriate source. As described inmore
detail below, such context information is an example of data
that can be used to augment messages.

Database 912 is configured to store various types of meta-
data. In the example shown, database 912 is distinct from raw
store 920 (a distributed database). In various embodiments,
database 912 (and/or database 910) are also stored by raw
store 920.

In various embodiments, receiver 908 is configured to sup-
port the Avro remote procedure call and binary serialization
framework. Accordingly, while collector 902 could transmit
individual messages (e.g., in JSON or XML), efficiencies can
be achieved by encapsulating multiple messages into a seri-
alized compact binary format.

When a message pile is received from collector 902,
receiver 908 extracts the individual messages included in the
pile and enriches the messages as applicable. One benefit of
enriching a message is that when the message is indexed, the
result will be more useful when performing searches (e.g., by
allowing the data to be partitioned in more ways). In various
embodiments, messages comprise key-value pairs. Messages
are enriched through the addition of other keys. The original
raw data is not altered. As will be discussed in more detail
below, such a message format allows platform 102 to parse
and subsequently reparse message information in a version-
able manner.

One example of message enrichment is the addition of
various identifiers. Individual messages as created by a col-
lector need not include a blade identifier or collector identifier
(or organization identifier) at creation time. All of the mes-
sages in the pile were created based on information provided
from a single blade. Accordingly, instead of including the
blade identifier inside every message, the collector may
stamp the message pile with the blade identifier. There is no
need for the collector to stamp the pile with a collector iden-
tifier or organizational identifier because that information can
be determined based on information stored in metadata data-
base 912. Accordingly, one type of enrichment that can be
performed by receiver 908 is to insert blade/collector/organi-
zational identifiers into messages as applicable. As another

25

30

35

40

45

10

example, user-supplied tag information, inferred metadata,
and explicit instructions for augmenting specific fields (e.g.,
simplifying hostname information) can be included in the
message by receiver 908.

Another type of enrichment that can be performed by
receiver 908 is the addition of timestamps to messages. Sup-
pose, as explained above in conjunction with FIG. 3, the
“messageTime” portion of a message indicates the time that a
given message was created by a collector. The message pay-
load may include timestamp information that is distinct from
the messageTime. For example, a particular log entry may
pertain to a device with a misconfigured system clock (e.g.,
set to the wrong day) or may have been batch processed by a
collector such that the amount of time elapsed between when
the log entry was originally generated and when it was pro-
cessed by the collector is different. In such cases, platform
102 can extract the value included within the log entry and
enrich the message with another field, such as “sourceTime.”
If the value included within the log entry is incomplete (e.g.,
the log entry says “March 21” but omits the year), receiver
908 can ensure that the sourceTime is stored in a canonical
form. Another example of a timestamp that can be used to
enrich a message is the time that the receiver received the
message pile.

Yet another example of enrichment is the creation of a
digest of the message (e.g., based on a combination of the
message and the associated organization identifier). The
digest can be used for audit purposes (e.g., for the detection of
tampering) and can also be used in other ways. As one
example, platform 102 is a multitenant system. It is possible
that data for two different customers will wind up in the same
address spaces. Probes can be introduced into the overall call
stacks that make explicit the call context: this call is being
made on behalf of a particular user at a particular organiza-
tion. As data is being assessed or produced, the actual mes-
sage digest along with the organization identifier can be used
to re-perform the digest computation as a check with what-
ever organization identifier is received from the current call
context. Checks may be performed for all method calls, but
may also be used on a subset of calls, such as for efficiency
purposes.

Receiver 908 provides output to various components of
platform 102. As one example, it places (enriched) message
piles into pile queue 916. One consumer of pile queue 916 is
raw module 914, which is responsible for storing message
piles to one or more raw data stores. In various embodiments,
the raw data store(s), rather than structured store 918 is used
as the system of records. In the example shown, the raw data
store is the distributed database management system Cassan-
dra, and is used as a near term store. Cassandra has as prop-
erties that it is very fast at both reads and writes. Messages are
stored in Cassandra (920) for one week. In addition, because
it is a distributed system, an acknowledgement of successful
write from Cassandra (926) is a good indicator of a durable
write. Upon receipt of the acknowledgement, the raw module
notifies (via acknowledgement queue 928) the receiver,
which in turn sends an acknowledgement back to the collec-
tor. As the message piles being stored are relatively small
(e.g., 300 messages), latency between when the collector
transmits a pile and when it receives an acknowledgement of
durable write is minimized. The piles sent by the collector and
for which the acknowledgement of durable write are ulti-
mately received include an identifier, generated by the col-
lector. In some embodiments the acknowledgement of
durable write sent back to the collector includes the appli-
cable identifier.

US 9,262,519 B1

11

Receiver 908 also places message data, repackaged into
blocks, into block queue 922. Longer term storage of large
files is typically more efficient than longer term storage of
smaller files. Accordingly, the blocks are significantly larger
than piles, and include the contents of multiple piles inside.
The blocks are sent to a Hadoop Distributed File System
(HDFS) 924, where they are stored for 30 days, and to Ama-
zon S3 (926) where they are stored indefinitely. When
receiver 908 generates a block, a block identifier is created
and stored in metadata database 912. Additional information
such as what time range it spans, whether it has been sent to
S3 yet, and other applicable information is also stored in
database 912. The block identifier is also associated with each
of'the piles whose contents are placed into the block. One way
of'performing such a linking is as follows: When a pile is first
received from a particular organization, a new block is gen-
erated in parallel. One of the enrichments made to the pile
prior to storage in raw store 920 is the block identifier.

The metadata stored in database 912 is usable to resolve
queries more quickly. For example, if a query requesting the
raw data for a given customer during a given time range is
requested, an intersection of all the time ranges of all possible
blocks can be made, thus identifying those blocks that do not
need to be opened.

Queue 916 is also consumed by indexer 930 which creates
a full text index 932. In some embodiments, indexer 930
receives piles from pile queue 916, examines the data in each
message, and prepares the message for full text indexing by
extracting tokens and building an inverse index using Lucene.

Parser engine 934 parses messages in the pile queue and
stores the results in structured store 918 in accordance with an
applicable schema. In various embodiments, parser engine
934 includes a library 942 of parser rules/schemas. If the
message has an associated source type (e.g., specifying that
the message is from an Apache server, or that it is a credit card
transaction), the corresponding rule set will be selected from
the library and applied when parsing. If the source type has
not been specified, efficient parsing of the message can none-
theless be performed by platform 102. As will be described in
more detail below, an appropriate rule set can be automati-
cally selected from the library and used (conceptually, turning
parser engine 934 into an Apache parser or credit card trans-
action parser), by performing a heuristic or other evaluation
of the message (or sequence of messages). In some cases, a
preexisting parser rule set may not exist for a given message.
As will also be described in more detail below, an appropriate
rule set can be automatically generated (e.g., by parser gen-
erator 940) and ultimately stored in the parser library.

In the example shown in FIG. 9, a single parser engine 934
is depicted. In various embodiments, multiple parsing
engines are present within platform 102 and rules are tagged
with which parsing engine(s) they pertain to. For example,
one parsing engine may be configured to support the parsing
of plaintext messages, while another parsing engine may be
configured to support the parsing of binary data.

As explained above, structured store 918 need not serve as
a system of record. Instead, structured store 918 is used as a
performance optimization so that structured analytics do not
need to constantly parse and reparse raw data. Indeed,
because the raw message information is preserved, at any
time (e.g., if improved parsers are developed), the data in the
structured store (or portions thereof) can be erased and
replaced, or augmented, as desired. For example, as explained
above, a first customer might provide to platform 102 a rule
set/schema for handling log files from an obscure application.
Suppose a second customer of platform 102 (and user of the
same application) initially uses the tools supplied by the first

40

45

55

12

customer to store data in the structured store. The second
customer subsequently improves those tools. Both customers
are able to reparse (or augment, depending on how the rule
set/schema have been modified) their data based on the
improvements.

Stream processing engine 938 has a direct connection from
the receiver and allows users such as Alice and Charlie to
obtain real time information about their systems.

Query system 936 supports (e.g., via web service 126) the
ability of users such as Alice and Charlie to perform queries
against their data. Cross-customer data analysis can also be
performed. In some embodiments query system 936 is an
SQL query engine and supports batch oriented queries. In
various embodiments, query system 936 pulls together data
from raw module 914, structured store 918, and stream pro-
cessing engine 938, and use techniques such as full text index-
ing to apply those sources against the input data—either
individually or in combination.

FIG. 10 illustrates an embodiment of a process for collect-
ing and transmitting data. In some embodiments the process
is performed by a collector, such as collector 902. The process
begins at 1002 when information from a separately installed
information reporting module is received. As one example, at
1002, information from a syslog blade is received by collector
902. At 1004, messages, including the raw information
received at 1002, are sent to a remote server. As one example,
at 1004, collector 902 transmits a message pile to platform
102.

FIG. 11 illustrates an embodiment of a process for receiv-
ing and processing data. In some embodiments the process is
performed by platform 102. The process begins at 1102 when
a message is received from a remote device. Included in the
message is raw information. One example of raw information
is unparsed information. At 1104, at least a portion of the
received raw information is parsed.

Automatic Parser Selection and Usage

In various embodiments, customers of platform 102 (and/
or vendors) are able to submit parser rule sets/schema to
platform 102. The ability to access the submissions may be
restricted in use to the submitting customer, but can also be
designated for use by other customers. As one example, sup-
pose Acme Company uses a relatively obscure application
that provides as output various log files. Alice has configured
ablade to supply the log files to platform 102, and the raw data
is ingested into platform 102 and stored (e.g., in raw store
920). Initially, no rule sets/schema customized to the appli-
cation’s logs are present in library 942. Even without such
tools, the received message data can nonetheless also be
included in structured store 918 (if desired). For example,
included in library 942 are various token definitions which
can be used to recognize pieces of the syntax of the applica-
tion log. Examples include IP addresses, IPv6 addresses,
email addresses, usernames, date formats, and credit card
numbers. In some embodiments, when such tokens are used,
Alice is presented (e.g., via web service 126) with an interface
asking her to confirm the tokenizations proposed by platform
102, and asking her to supply additional information about
the application. As one example, Alice would be asked to
confirm whether data extracted from a particular field corre-
sponds to a date. Techniques for automatically generating a
parser are described in more detail below.

Suppose Alice (either internally within Acme or in coop-
eration with the application’s vendor) develops a full set of
parser rules/schema for the application and supplies them to
platform 102. Later, when a second customer of platform 102
begins using the same application, Alice’s contributions will
be available to parse the second customer’s data, without the

US 9,262,519 B1

13

second customer having to expend the effort (and/or money)
to develop its own set of tools. The second customer can be
made aware of Alice’s tools in a variety of ways. As one
example, after Alice has supplied rules/schema to platform
102’s library, the application can be included in the source
type/source vendor options presented in interfaces such as
interface 500, allowing the customer to select them. As
another example, as with any other blade for which source
type information has not been configured, platform 102 can
attempt to automatically select an appropriate parser for that
data and recommend it to the blade’s administrator. A process
for performing such automatic selection (whether of common
rule sets, such as those for Apache logs, or of more obscure
rule sets, such as may have been provided by customers) will
now be described.

FIG. 12 illustrates an embodiment of a process for auto-
matically selecting a parser. In some embodiments the pro-
cess shown in FIG. 12 is performed by platform 102. The
process begins at 1202 when raw data is received from a
remote source. In some embodiments portion 1202 of the
process shown in FIG. 12 corresponds to portion 1102 of the
process shown in FIG. 11.

Suppose Charlie has configured a blade using interface
600. Charlie has not specified a source type (or vendor) for the
data. At 1204, the raw data is evaluated against a plurality of
rules. As one example of the processing performed at 1204,
the raw data could be evaluated (e.g., in sequence) against
every rule included in library 924 by parser engine 934. As
another example, in some embodiments parser engine 934 is
implemented as a finite state machine and rules are evaluated
in parallel. At 1206, a confidence measure is determined.

As one example of the processing performed at 1204 and
1206, the first 1,000 lines of raw data received from a blade at
1202 are evaluated against each rule in library 924. Suppose
the confidence measure for the raw data with respect to an
Apache access log parser is 0.999, with respect to a particular
vendor’s router parser is 0.321, and with respect to a credit
card transaction parser is 0.005. A determination is made that
the confidence measure with respect to the Apache access log
parser exceeds a threshold, indicating that the received raw
data is Apache log data (and in particular, access log data),
with a very high confidence. As another example, as a result
of processing by parser engine 934, a determination of
“match” or “not match” could be made. A determination of a
“match” corresponds to a high confidence value. At 1208, an
indication that the raw data is Apache access log data is
output.

The output of the process shown in FIG. 12 can be used in
avariety of ways. As one example, the blade that provided the
raw data can have its configuration updated to include an
appropriate source type (and/or vendor type and version num-
ber as applicable). The configuration can be performed auto-
matically and can also be subject to administrator approval.
Data received from the blade in the future will be labeled in
accordance with the source type and the determined source
type can also be retroactively associated with data previously
received from the blade, as applicable. For example, metadata
database 912 can be updated to include the blade’s source
information and data already stored in either raw storage or in
the structured store can be updated to reflect the newly deter-
mined source information. In the case of syslog data (which
aggregates log data from multiple applications), the source
type could remain set to syslog, however, individual mes-
sages of the respective contributors to the log (e.g., ssh) can be
labeled.

Suppose a determination has been made, through the pro-
cess shown in FIG. 12, that a given blade is supplying raw data

15

25

40

45

50

55

65

14

that corresponds to a source type of an Apache access log.
Also suppose that when raw data received from the blade is
parsed using Apache access log parser rules, 2% of the raw
data is unparseable. This may be an indication that the parser
rules are out of date and need to be updated (e.g., because a
new version of Apache is creating slightly different log data).
In some embodiments, an administrator of platform 102 (or
other appropriate entity) is alerted to the discrepancies. The
process shown in FIG. 12 can be employed to detect a blade
that has the wrong source type set. For example, if Alice has
inadvertently designated the source type of a blade as being
Apache access log data, when it is in fact data pertaining to a
wireless router, platform 102 can determine that the received
raw data is largely unparsable (using the Apache parser rules),
execute the process shown in FIG. 12 to determine whether a
more appropriate source type should have been set, and rec-
ommend to Alice that she change the source type (or auto-
matically change it for her).

Another example of how the output generated at 1208 can
be used is as follows. When parsing engine 934 parses data
from the blade in the future, whether as part of an initial parse
as the data is included in structured store 918, as part of a
reparsing operation, or in conjunction with other types of
parsing, such as may be performed by stream processing
engine 938, a particular parser can be automatically selected.
The specific parser need not be specified, as parser engine 934
can be configured to always evaluate all messages using all
rules. However, by narrowing down the set of rules to be used
when parsing, the amount of computing resources required to
process the data can be reduced.

The output of the process shown in FIG. 12 can be used to
automatically select a schema for which portions of the raw
data should be extracted (and how they should be labeled).
For example, while a particular raw message may include a
total of ten columns’ worth of data, the selected schema may
state that the first column (“time”) and third column (“tem-
perature”) should be extracted separately from the other col-
umns, that column two should be discarded, and that columns
four through ten should be merged into a single column in the
structured store and assigned a collective label.

In some cases, messages may match multiple types of rules
with a high confidence. As one example, suppose in an analy-
sis 0f' 10,000 initial lines from a blade, 90% are determined to
be Apache access log data, and the remaining 10% are deter-
mined to be NTP data. This situation might arise if the device
from which the blade is extracting data is an Apache web
server that is configured to provide its logs to syslog (as is
NTP). In this scenario, the administrator of the blade could be
notified of the different types of data appearing in the syslog
and be given the opportunity to have those two types of data
individually tagged (e.g., with an “Apache” tag and an “ntp”
tag). Further, the notice alone would alert the administrator
that perhaps the logging on the device itself is misconfigured.

In some cases, none of the confidence measures deter-
mined at 1206 will exceed the threshold needed to classify the
received message data (e.g., as being Apache access log data).
One reason this could happen is that, as explained above, the
data may be associated with a new application for which no
parser rules/schema exist in library 942. As explained above,
approaches such as extracting tokens from the raw data, and
applying all parser rules to the data can be used to extract
structure from the raw data and store it in structured store 918.
In some embodiments, the data is not stored in the structured
store (e.g., because storing the data in the raw store is suffi-
cient for the data owner’s purposes). Further, in some
embodiments, if no appropriate parser is determined for the
raw data, the data is assigned a source type of “undefined” (or

US 9,262,519 B1

15

other appropriate label). Periodically, such data can be
reevaluated against the rules in library 942 so that, in the event
new orupdated parser rules are added that are a good fit for the
data, the owner of the data can be alerted and offered the
opportunity to begin parsing data using the applicable rules
(and/or to reparse the previously received raw data for inclu-
sion in structured store 918). In various embodiments, plat-
form 102 is configured to generate a parser applicable to the
raw data.

Automatic Parser Generation

FIG.13A illustrates a subset of entries in a log file. Suppose
the log data shown in FIG. 13A (along with several thousand
additional lines) is received (e.g., at 1202 in the process
shown in FIG. 12) and, after portions 1204 and 1206 of the
process shown in FIG. 12 have been performed, none of the
rules in library 942 are determined to be a match (e.g.,
because all of the confidence measures are low). In some
embodiments, one or more parser rules are generated using
the raw data according to the following techniques.

FIG. 14 illustrates an embodiment of a process for auto-
matically generating a parser. In some embodiments, the pro-
cess shown in FIG. 14 is performed by platform 102. The
process begins at 1402 when raw data is received from a
remote source. In some embodiments portion 1402 of the
process shown in FIG. 14 corresponds to portion 1202 of the
process shown in FIG. 12. At 1404, a determination is made
that the raw data does not conform to any rules included in a
set, such as the rules included in library 942. As one example,
at 1404, the confidence measures determined at 1206 are
evaluated and a conclusion is reached that none of the mea-
sures exceeds a threshold.

At 1406, the raw data is clustered using an appropriate
clustering technique. The data shown in FIG. 13A could be
clustered into one (or a few) clusters, depending on the clus-
tering technique employed. When thousands oflines are con-
sidered, several clusters might emerge. For each cluster, a
determination is made of which values in each line are vari-
able across the cluster, and which remain constant, as well as
boundary information. As one example, in the data shown in
FIG. 13A, “Port” (1302) is present in all five lines, as is “STP
State” (1304), while the data in column 1306 changes (e.g., is
the value 2, 4, 6, or 16). Other values (e.g., “Oct 27”) which
appear to be constant based on the lines shown in FIG. 13A
would (after evaluating a sufficient number of lines) be deter-
mined to change.

Regular expressions that match the analyzed clusters can
then be automatically generated and structure inferred, such
as the number and size of columns. Using the lines shown in
FIG. 13 A, a sample regular expression that would match all of
the lines is shown in FIG. 13B. The regular expression shown
in FIG. 13B is an example of a parser rule (1406). Other rules
applicable to other lines of the log (not shown) could also be
generated to form a set of parser rules for the blade from
which the raw data is received (e.g., at 1402).

As explained above, library 942 includes various token
definitions for entries such as IP addresses and email
addresses. In some embodiments, in addition to generating a
set of parser rules for the data received at 1402, labels for at
least some of the columns are automatically selected (e.g.,
using the token definitions). Using the example shown in FI1G.
13 A, tokenization could be used to identify the first portion of
each line as being a date, and a time, respectively, or an
absolute time, collectively.

In various embodiments, the parser rule(s) generated at
1408 (and any associated column labels) are presented to a
human for review. The human may be an agent/employee of
platform 102, but may also be an administrator of the blade

10

35

40

45

50

55

16

from which the raw data used to form the rules/labels was
received (i.e., at 1402). Errors may be present in the automati-
cally generated rule(s), and the column labels may be incor-
rect or incomplete. As one example, the regular expression
shown in FIG. 13B indicates that “Host123” is static infor-
mation. An administrator of the blade might recognize that
“Host123” is a “hostname” (thus supplying a label that was
not able to be determined by platform 102) and also indicate
that instead of being represented in the rule as “Host123” it
should instead be represented as “\a+,” so that the rule can be
generalized for use with other hosts (including hosts of other
customers).

The rules/labels can be confirmed, or modified as appli-
cable, and then saved for future use, such as by being included
in library 942. The administrator of the blade can also be
asked to provide additional contextual information. As one
example, a dialog can be presented to the administrator that
says, “We’ve detected that you’re sending us data from a new
kind of log. Please help us improve our tools by identifying
the source of the data.”” Information provided by the admin-
istrator can be used to associate a source type (and/or source
vendor and version) with the generated parser rule(s)/labels.

As explained above, customers can leverage tools provided
to library 942 by other customers. Thus, if a second customer
has a blade that transmits message data that is sufficiently
similar to the data shown in FIG. 13A, the generated parser
(s)/1abels can be automatically selected for use by platform
102 and/or can be recommended to the second customer. A
source type for the second customer’s blade can similarly be
recommended based on information provided by the first
customer. The second customer can also be presented with the
selected rule(s) and labels and given the opportunity to
modify them as necessary. For example, the second customer
may notice that the rule does not cover all of the applicable
states (e.g., listening, disabled, learning).

Log Data Analysis—“Summarization”

FIG. 15 illustrates an environment in which log data is
collected and analyzed. In the example shown, platform 1502
is an embodiment of platform 102. As shown, a user of
browser 1504, such as Alice, can access platform 1502 via a
web service 1526. Web service 1526 is an embodiment of web
service 126. As will be described in more detail below, vari-
ous data manipulation and visualization tools are made avail-
able via platform 1502.

FIG. 16A illustrates a subset of entries in a log file. The log
file has thousands of entries and its contents are periodically
sent (e.g., by a collector) to platform 1502. As will be dis-
cussed in more detail below, lines 1602-1608 were inserted
into the log by a C program, a portion of which is shown in
FIG. 16B. In particular, lines 1602-1608 were inserted by the
print statement on line 1652.

Suppose the data shown in FIG. 16A pertains to a disk
controller located in Acme Company’s network. The disk
controller has an associated collector called “disk-control-
lerA-collector.” Alice believes the disk controller may be
malfunctioning. She would like to view the logs associated
with the controller as part of her investigation, but is daunted
by the prospect of reviewing thousands of lines of logs (or
more).

Alice visits platform 1502 using browser 1504, logs in to
her account (as an Acme Company administrator), and is
presented with interface 1700 shown in FIG. 17. She can
perform queries on Acme’s data by submitting them in box
1702. As one example, Alice could enter the name of the
collector “disk-controllerA-collector” into box 1702. She can
specify a time range for the log entries she would like to view

US 9,262,519 B1

17
by selecting an appropriate range (e.g., “last fifteen minutes,”
“yesterday,” “this week,” “Oct 10 midnight through Oct 12
noon”) via dropdown 1704.

FIG. 18 illustrates interface 1700 after Alice has entered a
query term into box 1702 (1802) and selected start button
1706. As indicated in region 1804, a total of 2,885 individual
messages (e.g., log lines) pertaining to the disk controller
collector were generated in the time frame selected by Alice
(1806). A graph depicting when, over the time frame, the
messages were generated is shown in region 1812.

Alice could manually review each of the messages by
interacting with scroll bar 1808 and controls 1810. However,
doing so could potentially take Alice hours of time. Further,
Alice may inadvertently miss important or otherwise inter-
esting messages due to the sheer volume of messages she is
reviewing, the bulk of which may be uninteresting.

If Alice clicks on “Summarize” tab 1814, she will be pre-
sented with interface 1900, shown in FIG. 19. The Summarize
view groups messages by content similarity into clusters. In
particular, messages with similar structures and common
repeated text strings are grouped. The clusters in the summary
view are dynamically generated. For example, if Alice selects
a longer or shorter time range, includes multiple collectors in
her query term, etc., the clustering results will change.

Cluster column 1902 displays a “signature” for each clus-
ter. The content of each message in a given cluster conforms
to the signature. Within a given cluster signature, fields that
vary (and, in the example shown, are not tokenized) are dis-
played with wild card placeholders (e.g., “*”) while token-
ized fields such as timestamps and IP addresses are replaced
with appropriate placeholder variables (e.g., “$DATE” and
“$IP_ADDRESS”, respectively). As will be described in
more detail below, Alice can modify the signatures so that a
given static or tokenized field becomes more generalized
(e.g., by changing “Controller” to “*”, or “0.*” to “%
double”) and/or so that generalized fields become more spe-
cific (e.g., by changing “$IP_ADDRESS” to a specific IP
address).

As indicated in line 1904, a total of 1,569 messages in the
log for the specified time frame are “controller is idle” mes-
sages. As indicated in line 1906, a total of 596 messages
collectively indicate that the controller has received some
type of command. As indicated in line 1908, a total of 313
messages collectively indicate a status request was received
from a variety of hosts. Finally, as indicated in line 1910, a
total of 100 messages collectively indicate a time taken by the
controller to perform an action, in milliseconds. Additional
messages (e.g., in clusters of size smaller than 100) can be
viewed by operating scroll bar 1912. Messages that are not
readily grouped into clusters are separated into a distinct
cluster called “Others.” The “Others” cluster might contain
simple miscellaneous messages that are not important, or it
might include anomalous messages that are meaningful. To
investigate, Alice could locate the “Others” cluster (e.g., by
scrolling down) and “zoom in.”

Alice can “zoom in” on a given cluster and show its sub-
clusters (if applicable) by clicking the appropriate box in the
“Select” column (e.g., select button 1914) and clicking “View
Details” button 1916. Interface 2000, shown in FIG. 20,
depicts interface 1900 after Alice has elected to zoom in on
line 1910. Lines 2002 and 2004 illustrate that the “Time taken
to * controller” messages appear in two forms in the log—
time taken to “start” (2002) and time taken to “stop” (2004).

Alice can also take other actions with respect to the clusters
shown in interfaces 1900 and 2000. For example, she can hide
a given cluster by clicking icon 1918, causing it to disappear
from the results list. In some embodiments, clusters (and/or

10

15

20

25

30

35

40

45

50

55

60

65

18

signatures) are hierarchical in nature. As one example, the
signature shown in line 1910 can be considered a parent of the
signatures shown in lines 2002 and 2004, which are leaves.
Alice can break a single cluster into multiple clusters (i.e.,
cause a parent cluster to be broken into children) by clicking
icon 1920, if applicable. As one example, Alice could break
the cluster indicated in line 1910 into the two sub-clusters
indicated on lines 2002 and 2004 by clicking icon 1920. If a
cluster cannot be broken further (e.g., leaf cluster 2002), icon
1920 will be greyed out. Alice can mark a cluster (i.e., signa-
ture) as important by clicking on icon 1922. If Alice re-runs a
query (e.g., with a different time range or additional param-
eters), any clusters marked as “important” will remain as
separate clusters, irrespective of whether a clustering opera-
tion run against the results of the new query would have
yielded that cluster. Alice can undo (1928) and redo (1926)
actions, and can also reset any preferences (e.g., showing
previously hidden clusters) by clicking button 1924.

In some cases, Alice may want to edit the signature of a
cluster. For example, if the signature shown in line 1910 was
not present in the interface shown in FIG. 19 and instead the
signatures of lines 2002 and 2004 were, Alice could edit one
of the signatures (or create a new parent signature) that gen-
eralized the “stop” and “start” portions of the signatures into
a “*” or other appropriate generalization. Various additional
examples of signature editing are as follows:

Incomplete field: As previously explained, lines 1602-
1608 were generated by a C program, a portion of which is
depicted in FIG. 16B. Line 1652 of the program inserts into
the log the time, in milliseconds, taken to start or stop the
controller. Each of the time values present in lines 1602-1608
is less than a millisecond, and thus is prefaced with “0.”. The
signature depicted in line 1910 treats the “0.” as static text.
Suppose that upon reviewing the signature, Alice determines
that “0.*” should be generalized to “*”. She may have written
the program shown in FIG. 16B and thus have domain knowl-
edge about what the format should generalize to. It may also
be the case that the correction needed would be evident to
anyone viewing the data. For example, an individual might
readily identify that a field corresponds to a sequence number
(e.g., “38483749123”) and that the entire value should be
represented as a variable, rather than being partially repre-
sented by static information (e.g., “3848374*”). Alice can
modify the signature accordingly by selecting line 1910 and
clicking the edit button 1930, which will present her with an
editable copy of the signature. In various embodiments, addi-
tional wildcards are available, such as ones allowing Alice to
specify data types (e.g., integer vs. double). Alice’s edits can
be saved—whether for the rest of her query session, or more
permanently (e.g., in database 1528 as JSON).

In some embodiments, Alice’s edits are made available to
other users of platform 1502. Examples include making the
cluster signature available to other employees of Acme who
might manipulate the same data (i.e., data from that particular
collector) and employees of Acme who might manipulate
similar data (e.g., data from other disk controllers). In some
embodiments, the contents of database 1528 are made glo-
bally available (e.g., available to all users of platform 1502,
irrespective of whether or not they work for Acme). In various
embodiments, prior to a new signature being included in
database 1528, the user whose data was used to generate the
signature is prompted for permission. As one example, the
data Alice is examining in interface 1900 may have a signa-
ture generated for it that is not currently stored in database
1528. Prior to the signature being included in database 1528,
Alice may be asked to confirm that the signature does not
contain any confidential information (e.g., internal IP

US 9,262,519 B1

19

addresses or employee identifiers) and/or may be asked to edit
the signature to remove any confidential information present,
as applicable. Alice can also be asked to provide a description
of what the signature represents (e.g., as metadata) to be
stored in database 1528. As one example, a given signature
generated by platform 1502 (and/or refined by Alice) for an
Apache log might represent a URL request. When Alice is
prompted to add the signature to database 1528, she is asked
to explain the nature of the line. In some embodiments, the
signature label, rather than the signature itself, is displayed in
interface 1900 (e.g., as a user customizable option).

Missed field: In some cases, such as where the time win-
dow specified by Alice via dropdown 1704 is small, text that
is variable will erroneously be treated as if it is static. As one
example, if Alice selected a shorter time period than what is
shown, the messages corresponding to line 1908 might be
generated with respect to a single IP address (e.g., 10.0.0.1),
rather than multiple IP addresses. The signature generated
might thus include that single IP address as a static field. Alice
can modify the signature to transform the specific IP address
into the variable, “$IP_ADDRESS” as needed.

Misunderstood field: Similar to the incomplete field
example above, for some data in a message, such as a URL,
portions of the data may erroneously be treated as fixed rather
than variable. As one example, log entries that include per-
mutations of “www.example.com/page123.htm]” might be
erroneously generalized to “www.*.com/page.html” when
“SURL” or “www.example.com/*” or some other generali-
zation might be more appropriate. Alice can modify the fields
in the signature as needed/desired. In various embodiments,
Alice is able to assign labels to the fields (e.g., denoting an
internal IP address vs. an external IP address). Fields can also
be hierarchical, e.g., with “SEXTERNAL_IP” being a child
of “S§IP_ADDRESS”.

Alice can also interact with other regions of interfaces 1900
and 2000. For example, in some embodiments, if Alice hovers
her mouse over star 1932, a floating list of each of the values
that is generalized by that star is shown. Alice can interact
with the list, e.g., by hiding entries with certain values—
designating values that should be used to split the cluster into
separate clusters, etc. As one example, Alice could opt to hide
messages matching the signature shown in line 1910 where
the time is under 0.3 ms. As another example, Alice could opt
to break the messages matching the signature shown in line
1906 into clusters corresponding to each of the specific
actions subsumed by the wildcard.

FIG. 21 illustrates an embodiment of a process for analyz-
ing log data. In some embodiments, process 2100 is per-
formed by platform 1502. The process begins at 2102 when
log data is received. The log data can be received in a variety
of' ways. For example, it can be received as a real time stream
(e.g., directly from a collector), it can be retrieved from a
storage, and can also be received from multiple sources (e.g.,
multiple streams tagged with identifiers). Further, the
received data can be refined through the use of one or more
query terms (e.g., limiting the received data to just that data
that includes a keyword, limiting the received data to a par-
ticular time frame, and/or any other applicable constraints).
As one example, log data is received at 2102 when Alice
clicks on “Summarize” tab 1814, indicating which data she
wishes to be analyzed. In some embodiments, query results
are always summarized, e.g., without Alice having to click on
tab 1814.

At 2104, the received log data is clustered. A variety of
approaches can be used to perform the clustering. As one
example, the log data can be clustered using nearest neighbor.
Another approach is to perform a hierarchical clustering

10

15

20

25

30

35

40

45

50

55

60

65

20

using fuzzy matching. Matches with scores above a certain
threshold (e.g., 95%) are deemed to belong to the same clus-
ter. In some embodiments, the score represents a confidence
that the lines were generated with the same print statement.

Finally, at 2106, a signature is generated for each cluster.
One approach to generating a signature is to determine a print
statement that could have generated each of the lines in the
cluster. In particular, the static (constant) portions are deter-
mined and the non-static portions are generalized (e.g., using
tokens and/or wild cards). Using lines 1602-1608 as an
example, “Time taken to” aligns across all four lines and is
treated as static (constant) information, as is “controller is.”
The portion in between (i.e., “start” or “stop”) is generalized,
e.g., to any of: the wild card “*”, a text string, and a regular
expression (e.g., [start,stop]), as appropriate. As shown at
1910 in FIG. 19, an example of a signature for lines 1602-
1608 is “SDATE Time taken to * controller is 0.* ms”.

In some embodiments, the log data operated on by process
2100 is already tokenized (e.g., as a result of at least a portion
of process 1200 being performed on the data previously). A
token library can also be used to automatically generalize
fields in a given cluster as process 2100 is performed, such as
email addresses, IP addresses, and date/time information.
Rudimentary data types and other classifications such as
“double,” “int,” and “Boolean” can also be used within the
signature to offer additional granularity of generalization
between the spectrum of fixed text (i.e., literal matches) and a
“*” wildcard (i.e., matching everything).

In various embodiments, multiple iterations of portions
2104 and 2106 of process 2100 are performed, and/or por-
tions 2104 and 2106 are performed in parallel. As one
example, when Alice first begins her query session (e.g.,
when she encounters interface 1700 after logging in), the set
of signatures associated with the session may be empty. As
messages are received and processed, the set of signatures
increases (e.g., with the first message being used to create a
signature, and additional messages either matching the sig-
nature or forming the basis of new signatures, as applicable).
As previously mentioned, signatures can also be stored (e.g.,
in database 1528) and used as a library instead of generating
all signatures from scratch for each session. For example, a
signature that matches the presence of a failed login attempt
in a particular kind of log data may be of interest to virtually
anyone reviewing that log data. Such a signature could be
included in database 1528.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

What is claimed is:

1. A system, comprising:

a first interface configured to receive log data;

a set of one or more processors;

a memory coupled with the set of one or more processors,
wherein the memory is configured to provide the set of
one or more processors with instructions which when
executed cause the set of one or more processors to:
analyze the received log data at least in part by:

clustering portions of the log data into clusters of
similar data portions; and

subsequent to the clustering, dynamically generating
a signature for each cluster, wherein comparison of
subsequent log data with the signature indicates
whether the subsequent log data belongs in the
cluster; and

US 9,262,519 B1

21

cause information associated with the analysis to be
displayed to a user;

a storage configured to store a plurality of signatures
including the dynamically generated signature in a sig-
nature library, wherein the library is accessible by a first
and second user, and wherein the first user can use the
plurality of signatures in conjunction with data that is
not accessible to the second user; and

a second interface configured to receive user input associ-
ated with taking action with respect to the displayed
information.

2. The system of claim 1 wherein the information caused to

be displayed to the user includes the signature.
3. The system of claim 1 wherein the user input received via
the second interface includes an instruction from the user to
modify the generated signature.
4. The system of claim 1 wherein the user input received via
the second interface includes an instruction from a user to
label at least a portion of the signature.
5. The system of claim 1 wherein the user input received via
the second interface includes an instruction from the user to
treat the signature as important.
6. The system of claim 1 wherein the user input received via
the second interface includes an instruction from the user to
hide the signature.
7. The system of claim 1 wherein the signature corresponds
to a print statement that was used to generate at least some of
the log data.
8. The system of claim 1 wherein a field included in the
signature has a first level of granularity and wherein the set of
one or more processors is further configured to, in response to
a user request, generate a second signature in which the field
has a second level of granularity that is different from the first
level of granularity.
9. The system of claim 1 wherein the information caused to
be displayed to the user includes a representation of at least a
portion of the log data.
10. The system of claim 9 wherein the representation com-
prises a representation of the cluster.
11. The system of claim 1 wherein the set of one or more
processors is further configured to cause a set of controls to be
displayed to the user.
12. The system of claim 11 wherein at least one control
included in the set of controls comprises a control that allows
the user to break a cluster into sub-clusters.
13. The system of claim 11 wherein at least one control
included in the set of controls comprises a control that allows
the user to combine multiple clusters into a single cluster.
14. A method, comprising:
receiving, via a first interface, log data;
analyzing, using a set of one or more processors, the
received log data at least in part by:
clustering portions of the log data into clusters of similar
data portions; and

subsequent to the clustering, dynamically generating a
signature for each cluster, wherein comparison of
subsequent log data with the signature indicates
whether the subsequent log data belongs in the clus-
ter;

causing, using the set of one or more processors, informa-
tion associated with the analysis to be displayed to a
user;

storing a plurality of signatures including the dynamically
generated signature in a signature library, wherein the
library is accessible by a first and second user, and

20

35

40

45

22

wherein the first user can use the plurality of signatures
in conjunction with data that is not accessible to the
second user; and

receiving, via a second interface, user input associated with
taking action with respect to the displayed information.

15. The method of claim 14, wherein the user input
received via the second interface includes an instruction from
the user to modity the generated signature.

16. The method of claim 14 wherein the signature corre-
sponds to a print statement that was used to generate at least
some of the log data.

17. The method of claim 14 wherein the information
caused to be displayed to the user includes the signature.

18. The method of claim 14 wherein the user input received
via the second interface includes an instruction from a user to
label at least a portion of the signature.

19. The method of claim 14 wherein the user input received
via the second interface includes an instruction from the user
to treat the signature as important.

20. The method of claim 14 wherein the user input received
via the second interface includes an instruction from the user
to hide the signature.

21. The method of claim 14 wherein a field included in the
signature has a first level of granularity and wherein the set of
one or more processors is further configured to, in response to
a user request, generate a second signature in which the field
has a second level of granularity that is different from the first
level of granularity.

22. The method of claim 14 wherein the information
caused to be displayed to the user includes a representation of
at least a portion of the log data.

23. The method of claim 22 wherein the representation
comprises a representation of the cluster.

24. The method of claim 14 wherein the set of one or more
processors is further configured to cause a set of controls to be
displayed to the user.

25. The method of claim 24 wherein at least one control
included in the set of controls comprises a control that allows
the user to break a cluster into sub-clusters.

26. The method of claim 24 wherein at least one control
included in the set of controls comprises a control that allows
the user to combine multiple clusters into a single cluster.

27. A system, comprising:

a first interface configured to receive log data;

a set of one or more processors;

a memory coupled with the set of one or more processors,
wherein the memory is configured to provide the set of
one or more processors with instructions which when
executed cause the set of one or more processors to:
analyze the received log data at least in part by:

clustering portions of the log data into clusters of
similar data portions; and

subsequent to the clustering, dynamically generating
a signature for each cluster, wherein comparison of
subsequent log data with the signature indicates
whether the subsequent log data belongs in the
cluster; and

cause information associated with the analysis to be

displayed to a user;

a storage configured to store the dynamically generated
signature, wherein the signature is stored as a result of
actions taken by a first user, and wherein the stored
signature is modified by a second user; and

a second interface configured to receive user input associ-
ated with taking action with respect to the displayed
information.

US 9,262,519 B1

23

28. The system of claim 27 wherein the information caused
to be displayed to the user includes the signature.

29. The system of claim 27 wherein the user input received
via the second interface includes an instruction from the user
to modify the generated signature.

30. The system of claim 27 wherein the user input received
via the second interface includes an instruction from a user to
label at least a portion of the signature.

31. The system of claim 27 wherein the user input received
via the second interface includes an instruction from the user
to treat the signature as important.

32. The system of claim 27 wherein the user input received
via the second interface includes an instruction from the user
to hide the signature.

33. The system of claim 27 wherein the signature corre-
sponds to a print statement that was used to generate at least
some of the log data.

34. The system of claim 27 wherein a field included in the
signature has a first level of granularity and wherein the set of
one or more processors is further configured to, in response to
a user request, generate a second signature in which the field
has a second level of granularity that is different from the first
level of granularity.

35. The system of claim 27 wherein the information caused
to be displayed to the user includes a representation of at least
a portion of the log data.

36. The system of claim 35 wherein the representation
comprises a representation of the cluster.

37. The system of claim 27 wherein the set of one or more
processors is further configured to cause a set of controls to be
displayed to the user.

38. The system of claim 37 wherein at least one control
included in the set of controls comprises a control that allows
the user to break a cluster into sub-clusters.

39. The system of claim 37 wherein at least one control
included in the set of controls comprises a control that allows
the user to combine multiple clusters into a single cluster.

40. A method, comprising:

receiving, via a first interface, log data;

analyzing, using a set of one or more processors, the

received log data at least in part by:

clustering portions of the log data into clusters of similar
data portions; and

subsequent to the clustering, dynamically generating a
signature for each cluster, wherein comparison of
subsequent log data with the signature indicates
whether the subsequent log data belongs in the clus-
ter;

10

15

20

25

30

35

40

45

24

causing, using the set of one or more processors, informa-
tion associated with the analysis to be displayed to a
user;

storing the dynamically generated signature, wherein the

signature is stored as a result of actions taken by a first
user, and wherein the stored signature is modified by a
second user; and

receiving, via a second interface, user input associated with

taking action with respect to the displayed information.

41. The method of claim 40, wherein the user input
received via the second interface includes an instruction from
the user to modity the generated signature.

42. The method of claim 40 wherein the signature corre-
sponds to a print statement that was used to generate at least
some of the log data.

43. The method of claim 40 wherein the information
caused to be displayed to the user includes the signature.

44. The method of claim 40 wherein the user input received
via the second interface includes an instruction from a user to
label at least a portion of the signature.

45. The method of claim 40 wherein the user input received
via the second interface includes an instruction from the user
to treat the signature as important.

46. The method of claim 40 wherein the user input received
via the second interface includes an instruction from the user
to hide the signature.

47. The method of claim 40 wherein a field included in the
signature has a first level of granularity and wherein the set of
one or more processors is further configured to, in response to
a user request, generate a second signature in which the field
has a second level of granularity that is different from the first
level of granularity.

48. The method of claim 40 wherein the information
caused to be displayed to the user includes a representation of
at least a portion of the log data.

49. The method of claim 48 wherein the representation
comprises a representation of the cluster.

50. The method of claim 40 wherein the set of one or more
processors is further configured to cause a set of controls to be
displayed to the user.

51. The method of claim 50 wherein at least one control
included in the set of controls comprises a control that allows
the user to break a cluster into sub-clusters.

52. The method of claim 50 wherein at least one control
included in the set of controls comprises a control that allows
the user to combine multiple clusters into a single cluster.

#* #* #* #* #*

